Уточнение деталей вопроса

Вагон массой 15 т, движущийся по горизонтальному пути со скоростью 3 м/с, догоняет вагон массой 25 т, движущийся со скоростью 1,4 м/с, и сцепляется с ним. На сколько изменится механическая энергия вагонов при сцепке?

Ответ на вопрос

Перед сцепкой вагон массой 15 т имел кинетическую энергию, равную:

E1 = (m1 * v1^2) / 2 = (15 * 3^2) / 2 = 67,5 кДж

Аналогично, вагон массой 25 т имел кинетическую энергию, равную:

E2 = (m2 * v2^2) / 2 = (25 * 1,4^2) / 2 = 24,5 кДж

После сцепки вагоны движутся с общей массой 40 т и скоростью, которую можно найти из закона сохранения импульса:

m1 * v1 + m2 * v2 = (m1 + m2) * v

15 * 3 + 25 * 1,4 = 40 * v

v = 2,2 м/с

Таким образом, после сцепки вагоны имеют кинетическую энергию, равную:

E3 = ((m1 + m2) * v^2) / 2 = (40 * 2,2^2) / 2 = 48,4 кДж

Изменение механической энергии вагонов при сцепке можно найти как разность между их начальной и конечной кинетической энергией:

ΔE = E3 — (E1 + E2) = 48,4 — (67,5 + 24,5) = -43,6 кДж

Отрицательный знак означает, что при сцепке вагонов произошло снижение их механической энергии на 43,6 кДж. Это связано с тем, что при сцепке происходит потеря энергии на трение и деформацию вагонов.